

Novel Doped Zinc Oxide Sorbents For Regenerable Desulfurization Applications at Low Temperatures

Hongyun Yang ², and Bruce J. Tatarchuk ¹

Center for Microfibrous Materials Manufacturing
 Department of Chemical Engineering
 Auburn University, AL, 3849

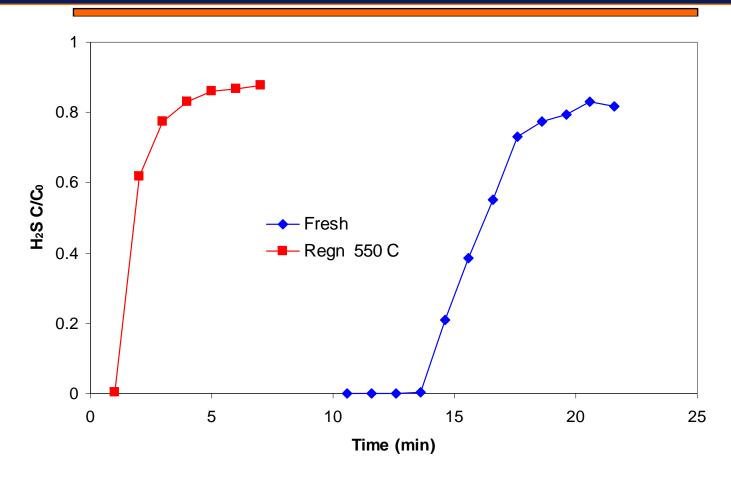
IntraMicron Inc., 368 Industry Dr., Auburn, AL, 36832

November 8, 2007

Objectives

- To develop novel H₂S sorbents with high sulfur capacity at low temperatures for quick system startup.
- To evaluate the multicycle performance of the sorbents as a function of temperature and regeneration conditions.

Outline



- Performance of Commercial ZnO Sorbents
- Sorbent Screening
- Sorbent Evaluation
 - Water, CO and CO₂ effects
 - Adsorption/reaction temperature
 - Regeneration temperature
 - Multicycle of behavior
 - Aging effects
- Conclusions
- Acknowledgement

Performance of Commercial ZnO Sorbent at Room Temperature

0.5 g of sorbent (105-250 μ m, 25 m²/g) tested at room temperature (20 C) with 8000 ppmv H₂S at a face velocity of 2.3 cm/s. Regn. at 550C for 3 hours.

Oxygen Vacancy in Doped ZnO/SiO₂ Sorbents

				Oxygen Vacancy				
		4-				/		
Ag	Ag	V	0	Ag	Ag	V	0	
Zn	Zn	0	0	Zn	Zn	0	0	
Zn	Zn	O	O	Zn	Zn	0	0	
Zn	Zn	O	0	Zn	Zn	0	0	

Function of dopants ¹⁻⁵:

- (1) Stabilize sorbents
- (2) Reduce the crystal size
- (3) Increase the surface area
- (4) Introduce crystal defects

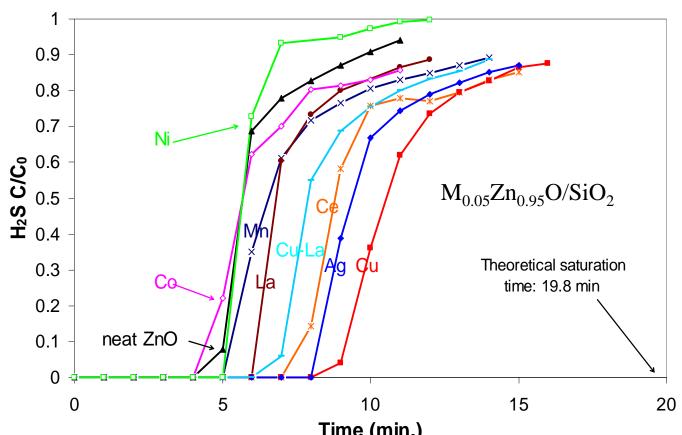
Oxygen vacancy

- (1) Improve the reaction rate
- (2) Enhance the desulfurization reaction rate
- (3) Metals in group IB are the best candidates to introduce oxygen vacancies

^{1.} Baid, T.; Denny, P.J.; Hoyle, R.; McMonagle, F.; Stirling, D. Tweedy, J. J. Chem. Soc. Faraday Trans. 1992, 88, 3375-3382

^{2.} Davidson, J.M.; Lawrie, C.H.; Sohail, K. Ind. Eng. Chem. Res. 1995, 34, 2981-2989

^{3.} Baird, T.; Campbell, K.C.; Holliman, P.J.; Hoyle, R.; Stirling, D. Williams, B.P. J. Chem. Soc. Faraday Trans. 1995, 91(18), 3219-3230


^{4.} Baird, T; Campbell, K.C.; Holliman, P.J.; Hoyle, R.W.; Huxam, M.; Stirling, D.; Williams, B.P.; Morris, M. J. Mater. Chem. 1999, 9, 599-605

^{5.} Xue, M.; Chitrakar, R.; Sakane, K.; Ooi, K. Green Chem. 2003, 5 (5), 529-534

Desulfurization Performance at Room Temperature

Time (min.) Tested at room temperature with 2 vol.% H_2S-H_2 at 3 cm/s; Sorbent Weight: 1 g; Bed Size: 0.97 cm (dia.) \times 2 cm (thickness), 100-200 mm SiO_2 support. All sorbents contain the same mole of metal, and all doped sorbents contained the same amount of ZnO.

Sulfur Capacities of Various Dopants at RT

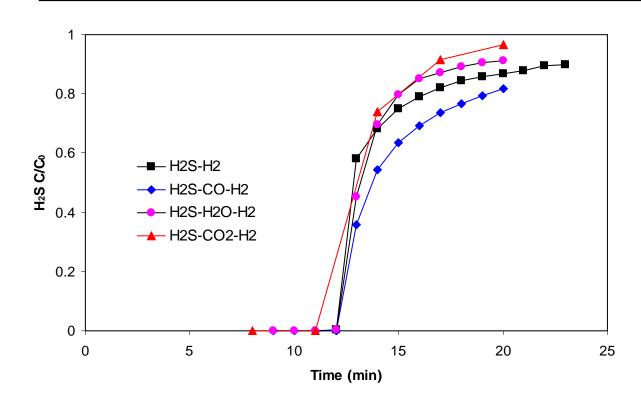
	Capacity ¹			
Dopant	(g S/g ZnO)	% of theor ²		
CuO	0.213	54		
Ag_2O	0.189	48		
Ce	0.177	45		
CuO-La ₂ O ₃	0.161	41		
La ₂ O ₃	0.140	35		
MnOx (1 <x<1.5)< td=""><td>0.132</td><td>33</td></x<1.5)<>	0.132	33		
NiO	0.113	29		
CoOx (1 <x<1.5)< td=""><td>0.113</td><td>29</td></x<1.5)<>	0.113	29		
ZnO	0.113	29		

- 1. Sulfur capacity calculated base on $t_{1/2}$ concept. Assume the sorbents are pure ZnO;
- 2. % of theoretical saturation capacity=capacity/theoretical saturation capacity \times 100% Note: tested at room temperature and the adiabatic temperature rise at the test conditions is 38 °C.

Low Temperature Cu-ZnO Sorbent

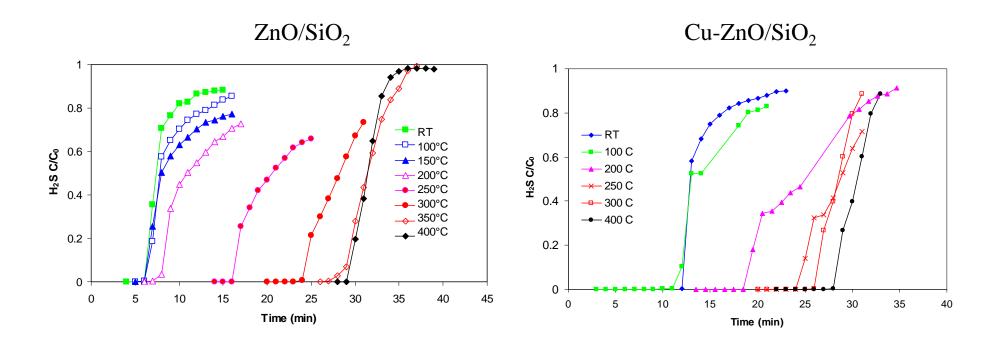
Advantages

- Low equilibrium H₂S concentration
- Improved desulfurization capacity
- Reduced grain size (XRD)
- No COS formation


Note

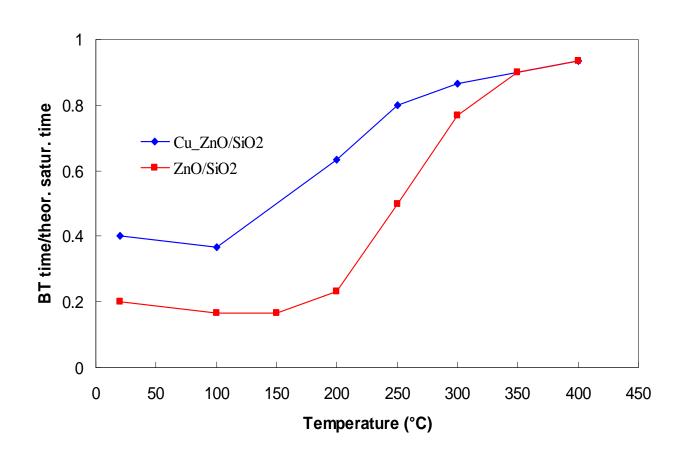
Inert supports are necessary to maintained the surface area and porosity.

Water, CO, and CO₂ Effects



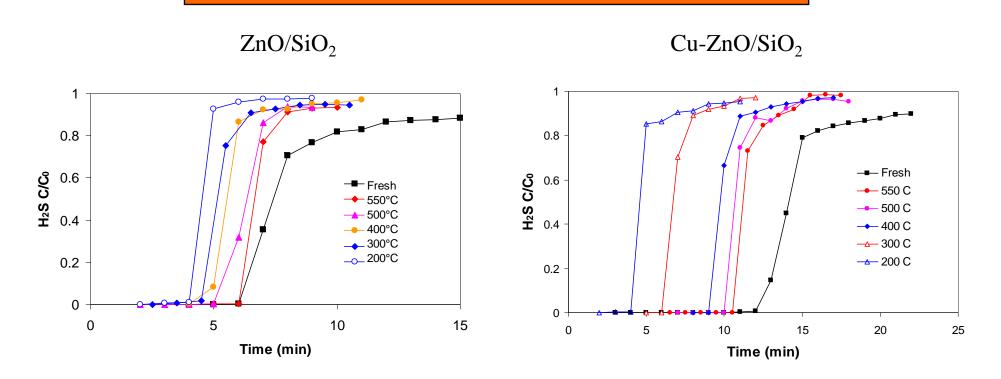
Breakthrough curves of Cu-ZnO/SiO2 tested at room temperature in the presence of water, CO or CO₂. In each experiment 0.5 g Cu-ZnO/SiO2 loaded and tested with 8000 ppmv H2S at a face velocity of 2.3 cm/s.

Desulfurization Performance at Various Temperatures



Breakthrough curves of ZnO/SiO₂ and Cu-ZnO/SiO₂ at various desulfurization temperatures. In each experiment 0.5 g Cu-ZnO/SiO2 loaded and tested with 8000 ppmv H₂S at a face velocity of 2.3 cm/s.

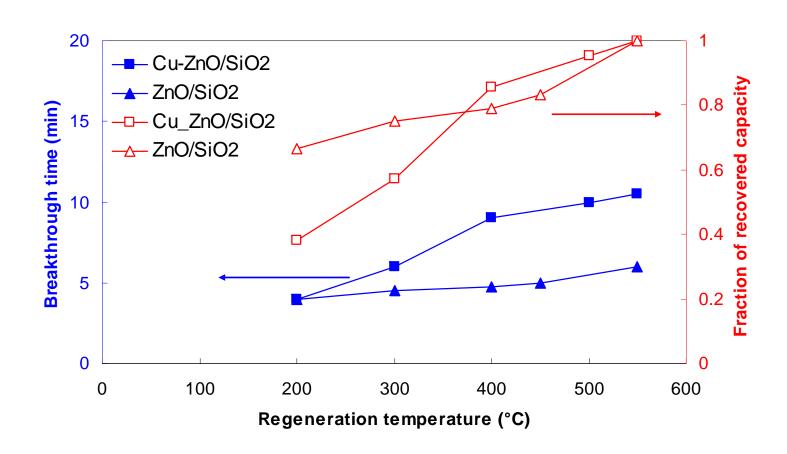
Desulfurization Performance Analysis



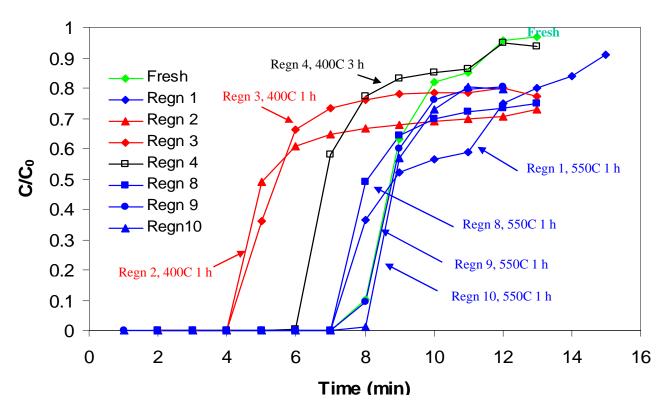
0.5 g ZnO/SiO2 loaded and tested with 8000 ppmv H₂S at a flow rate of 100 cm³/min STP.

TO THE AND ARTS OF THE AND ARTS OF SCIENCE AND

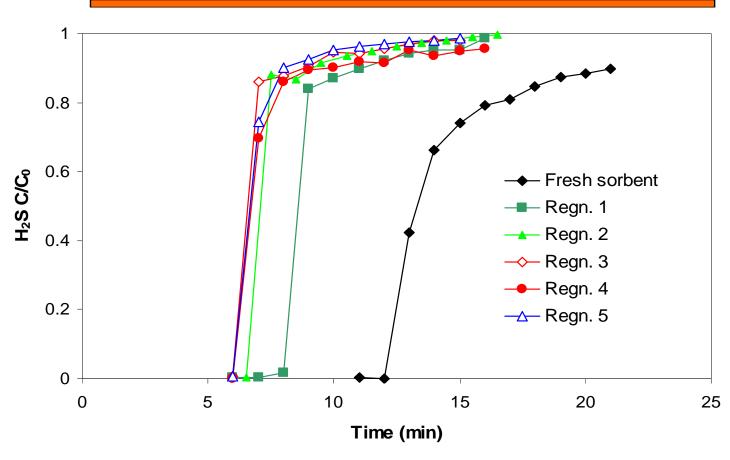
Performance of Sorbent Regenerated at Various Temperatures



Breakthrough curves of regenerated ZnO/SiO_2 and $Cu-ZnO/SiO_2$ at various regeneration temperatures. Sorbent tested at room temperature (20 $^\circ$ C) with 8000 ppmv H_2S at a face velocity of 2.3 cm/s

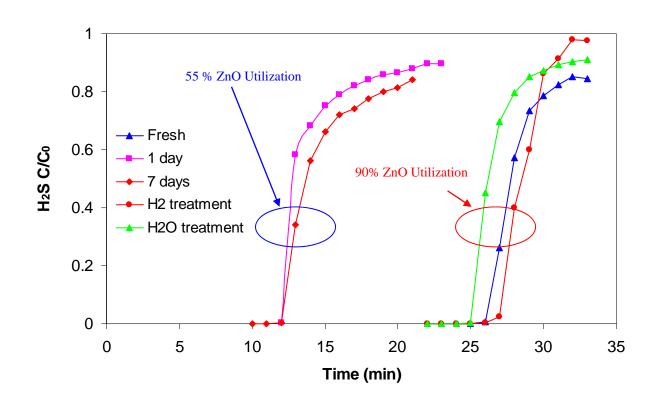


Multi-cycle Test



Default regeneration conditions: regenerated in house-hood air flow (20 cm/s) at 550°C for 1 hour; regn. 2 and regn. 3 were regenerated at 400°C for 1 hour and regn. 4 was regenerated at 400°C for 3 hours. Different color indicates different regeneration condition. The regenerated sorbent (1 g of) was tested with 2% H₂S-H₂ at room temperature.

Multi-cycle Test Regn. at 300° C



- 1. Sorbents were regenerated at 300 °C;
- 2. Desulfurization tests were conducted at room temperature 20 °C using 0.5 g ZnO/SiO₂ tested with 8000 ppmv H_2S at a flow rate of 100 cm³/min STP.

Aging effect of Cu-ZnO sorbent. Cu-ZnO/SiO $_2$ sorbent (0.5 g) was tested at room temperature with 2 vol % H_2S-H_2 at face velocity of 2.3 cm/s.

Summary/Conclusions

- Copper and silver dopants significantly enhance the desulfurization performance at room temperature. Cu-ZnO/SiO₂ demonstrated the highest sulfur capacity, which is twice that of ZnO/SiO₂ at room temperature.
- Copper dopant also reduced the regeneration temperatures.
- Water, CO, and CO₂ do not influence desulfurization behaviors of Cu-ZnO/SiO₂ sorbent at room temperature. No COS formation was detected.
- The above mentioned Cu-ZnO/SiO₂ sorbent particles are small in size, they are the ideal candidate to be entrapped in microfibrous media.
- The sorbent can be used in packed beds to protect fuel cells at ambient temperatures or during cold startup.

Acknowledgements

• This work was supported by the US Army under a U.S. Army contract at Auburn University (ARMY-W56HZV-05-C0686) administered through the US Army Tank-Automotive Research, Development and Engineering Center (TARDEC).

Thank you for your attention