

A Study of Kinetic Effects Using Microfibrous Entrapped ZnO Sorbents for H₂S Removal

Hongyun Yang ², Donald R. Cahela ¹ and Bruce J. Tatarchuk ¹

1. Center for Microfibrous Materials Manufacturing Department of Chemical Engineering Auburn University, AL, 36849

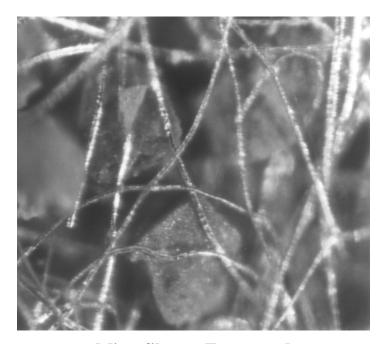
2. IntraMicron Inc., 368 Industry Dr., Auburn, AL, 36832

November 7, 2007

Objectives

- To establish a mathematic model for adsorption/reaction processes using both packed beds and microfibrous entrapped sorbents.
- To investigate the effects due to using microfibrous media.

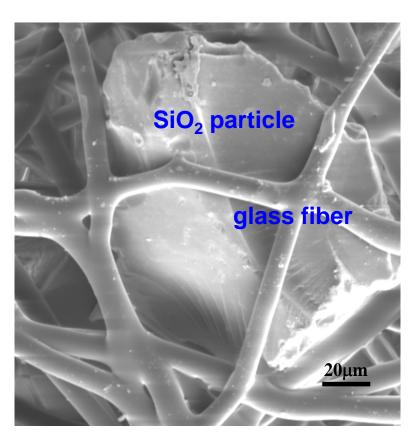
Outline


- Microfibrous Entrapped Sorbents/Catalysts
- Model Evaluation
 - Particle size effects
 - The relationship between lumped shape factor (K) and apparent reaction rate constant (k_a)
 - The relationship between K and challenge concentration (C_{A0})
 - The relationship between K and sorebent bed capacity density (ρ_c)
 - Effects of microfibrous media and void
- Composite Bed (Packed Bed+Polisher)
- Conclusions
- Acknowledgements

Microfibrous Entrapped Sorbents/Catalysts

Concept:

Micro-catalyst/sorbent particles


Properties:

- Unique form factors and thermal integration
- High contacting efficiency
- High intrabed thermal conductivity
- Enhanced mass and heat transfer
- Ease of regeneration
- High voidage (i.e., 75% for glass fiber entrapped sorbents)

Glass Fiber Entrapped Sorbents

Properties of Glass Fiber Entrapped Sorbent (GFE)

Component	Wt.%	Vol.%	
ZnO	12	N.A.	
SiO_2	66	22	
Fiber	22	3	
Void	N.A.	75	

Glass fiber entrapped SiO₂ particles

Bed Service Time Models

General Equation

$$t=A'+B'C'$$

Term	Yoon's Model	Wheeler Model	Mecklenburg Model
A'	$rac{W_e}{CF}$	$\frac{W_sW_c}{CF}$	$\frac{W_s AZn' \rho_c}{CF}$
В'	$rac{W_e}{kCF}$	$rac{W_{s} ho_{c}}{k_{v}C}$	$\frac{An'}{a_c}(\frac{dG}{\eta})^{0.41}(\frac{\eta}{\rho_a D})^{0.67}\frac{W_s}{CF}$
C'	$ \ln\left(\frac{C_b}{C_{A0} - C_b}\right) $	$ \ln\left(\frac{C_b}{C_{A0}}\right) $	$ \ln\!\!\left(\frac{C_b}{C_{A0}}\right) $

Yoon's model

$$\ln\left(\frac{C_{A0}}{C_A} - 1\right) = K(\tau - t)$$

$$K = ?$$

[•]Yoon, Y.H., Nelson, J.H., (1984). Application of Gas Adsorption Kinetics: I. "A Theoretical Model for Respirator Cartridge Service Life. American Industrial Hygiene Association Journal, 45, 509-516.

Modified Amundson Model

 For a second order heterogeneous reaction Amundson model

$$\frac{C_{A0}}{C_A} = 1 + \left[\exp\left(-\phi k_2 t C_{A0}\right) \right] \cdot \left[\exp\left(\frac{\phi k_2 \rho_c z_t}{U}\right) - 1 \right]$$

Modified Amundson model

$$\ln\left(\frac{C_{A0}}{C_A}-1\right) = \phi k_2 C_{A0}(\tau - t) \qquad k_2 = \frac{k_a}{\rho_c} \qquad \text{Apparent reaction rate}$$

$$\ln\left(\frac{C_{A0}}{C_A}-1\right) = K(\tau - t) \qquad K = \phi \cdot k_a \qquad C_{A0}$$

$$\rho_c \text{ defined as capacity density, is actually an effective ZnO molar density.}$$

7

Solid reactant

Mass Transfer Correlation for Apparent Reaction Rate

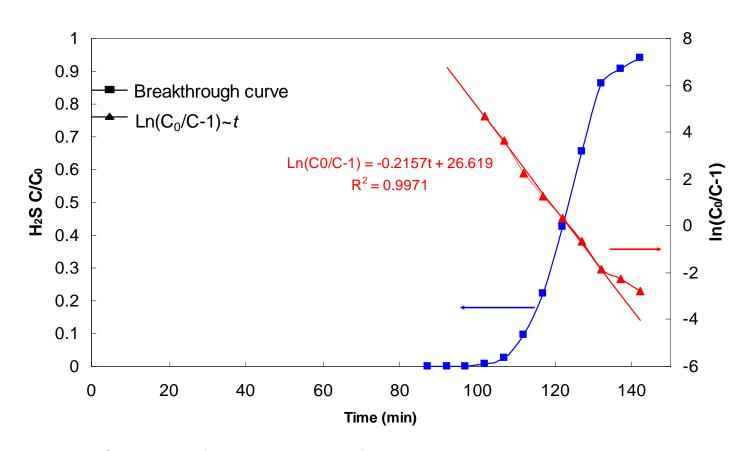
$$k_a = \frac{1}{\phi} k_c \alpha$$
 $\alpha = \frac{6(1-\phi)}{d_p}$ $k_c = Sh \frac{D_{AB}}{d_p}$ $Sh = J_d \operatorname{Re} Sc^{\frac{1}{3}}$

$$J_d = 1.24 \,\text{Re}^{"-0.39} \qquad \text{Re}'' = \frac{\text{Re}}{(1-\phi)}$$

$$k_{a} = 7.44 \cdot \frac{(1-\phi)^{1.39}}{\phi} \left(\frac{d_{p}\rho U}{\mu}\right)^{0.61} Sc^{\frac{1}{3}} \frac{D_{AB}}{d_{p}^{2}} \qquad K = 7.44 \cdot (1-\phi)^{1.39} \left(\frac{d_{p}\rho U}{\mu}\right)^{0.61} Sc^{\frac{1}{3}} \frac{D_{AB}}{d_{p}^{2}} \frac{C_{A0}}{\rho_{c}}$$

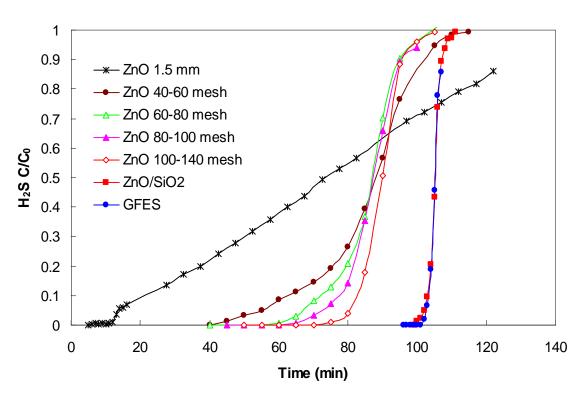
$$\frac{1}{\overline{d}_s} = \frac{a_f}{\varphi_f d_f} + \frac{a_p}{\varphi_p d_p}$$
 External surface area based average

For Packed Bed


$$k_{a} = 7.44 \cdot \frac{(1-\phi)^{1.39}}{\phi} \left(\frac{\overline{d_{s}}\rho U}{\mu}\right)^{0.61} Sc^{\frac{1}{3}} \frac{D_{AB}}{\overline{d_{s}}d_{p}} \qquad K = 7.44 \cdot (1-\phi)^{1.39} \left(\frac{\overline{d_{s}}\rho U}{\mu}\right)^{0.61} Sc^{\frac{1}{3}} \frac{D_{AB}}{\overline{d_{s}}d_{p}} C_{A0}$$

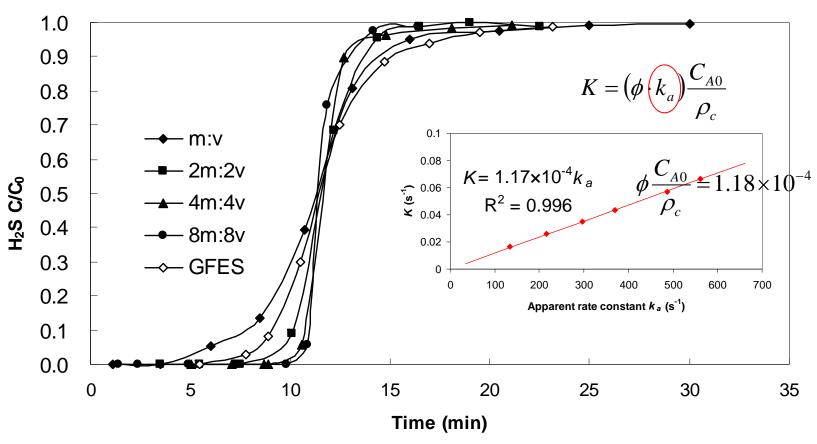
For Microfibrous Media

Model Evaluation

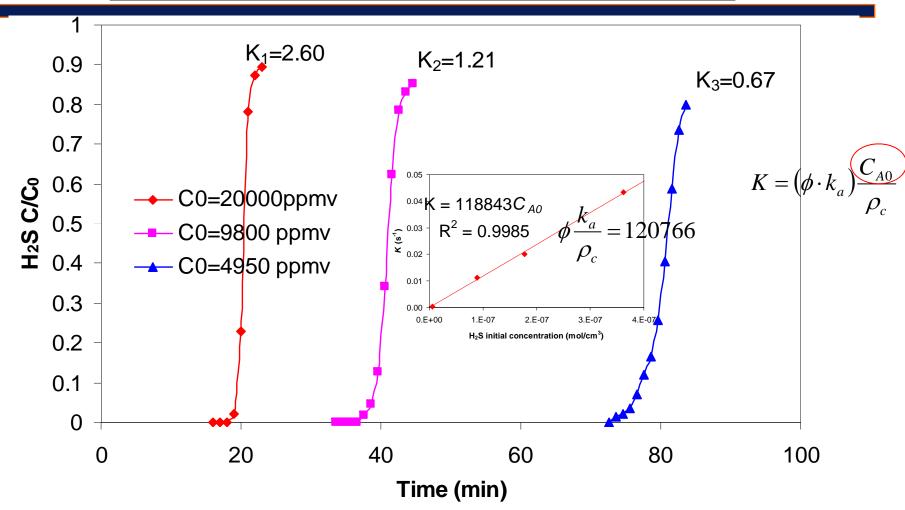


A commercial ZnO sorbent (60-80 mesh, 1 g) was tested with challenge gas concentration of 2 vol. % H₂S in H₂ and flow rate of 100 ml/min STP, at 400 °C.

Particle Size Effects

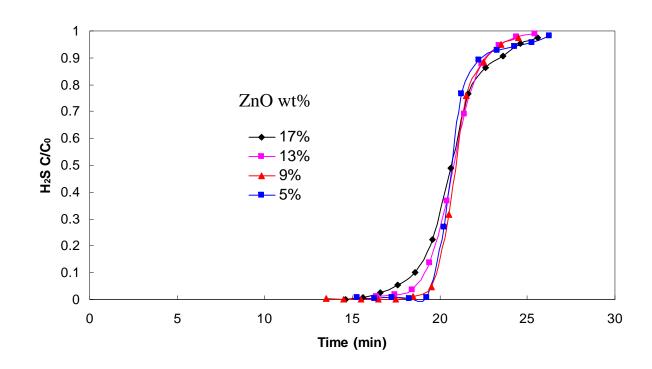


Breakthrough curves of the commercial ZnO sorbent particles (0.2 g, 0.18 g ZnO) with different sizes, and these of ZnO/SiO2 sorbent and glass fiber entrapped ZnO/SiO2 sorbent (GFES). Tested with challenge gas of 2 vol. % H_2S in H_2 at a face velocity of 1.2 cm/s at 400 °C.

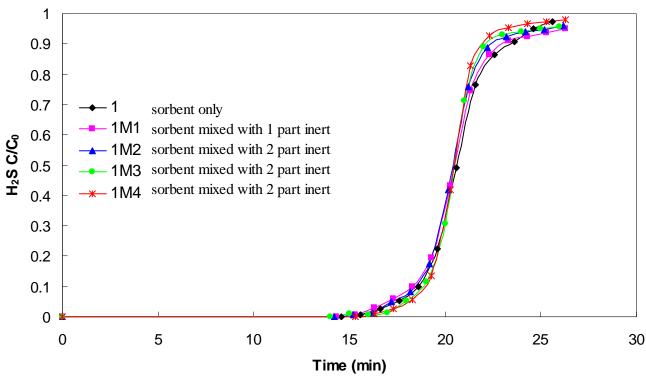


Breakthrough curves of ZnO/SiO_2 sorbent at different face velocities (m=0.1g, v=1.24 cm/s). Tested with challenge gas of 2 vol. % H_2S in H_2 at 400 °C.

Lumped K vs. C_0

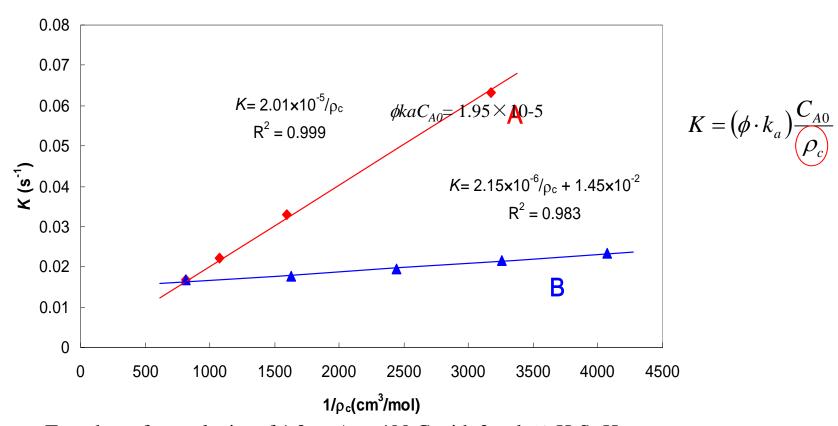


In each experiment, 0.8 g ZnO/SiO₂ was tested at face velocity of 5.0 cm/s at 400°C.



Breakthrough curves of ZnO/SiO₂ sorbents at various ZnO loadings and the same amount of ZnO of 0.034 g. Sorbents tested with challenge gas of 2 vol. % H₂S in H₂ at a face velocity of 1.2 cm/s at 400 °C.

Lumped K vs. ρ_c –Cont'd



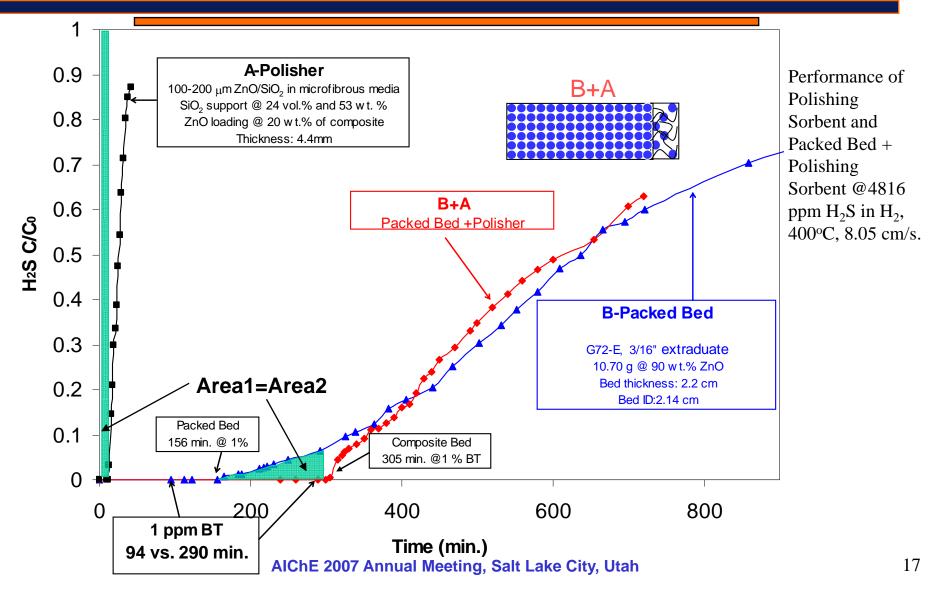
Breakthrough curves of ZnO/SiO_2 sorbents (0.2g ZnO/SiO_2 with ZnO loading at 17 wt.%) diluted by various amount of SiO_2 particles. Tested with challenge gas of 2 vol. % H_2S in H_2 at a face velocity of 1.2 cm/s at 400 °C.

Lumped K vs. ρ_c -Cont'd

Tested at a face velocity of 1.2 cm/s at 400 C with 2 vol. % H₂S -H₂.

- (A) packed beds of ZnO/SiO₂ sorbents (100-200 μm) with various ZnO loadings
- (B) diluted packed beds of ZnO/SiO_2 sorbents (100-200 μm).

Effects of Void and Microfibrous Media


	Packed bed		Microfibrous entrapped sorbents*	
ϕ	0.4	0.75	0.75	
$\rho_c (\text{mol/cm}^3)$	0.0012	0.00042	0.00042	
d_p (μ m)	150	150	150	
\overline{d}_s (µm)	150	150	63	
k_c/k_{cp}	1	0.67	0.99	
k_a/k_{ap}	1	0.16	0.22	
K/K_p	1	0.67	1.13	
K/K_p (experimental)	1	-	1.32	

^{*}Contains 3 vol.% 8um glass fiber

Kinetics in Composite Bed

Kinetics in Composite Bed

Test	K (s-1)		τ (min.)		z _c (cm)	
	initial	final	initial	final	(1 ppmv)	(0.1 ppmv)*
Polishing layer	1.33×10 ⁻²	-	18.3	-	0.149	0.189
Packed bed	4.08×10 ⁻⁴	1.10×10 ⁻⁴	370	630	1.84	4.03
Composite bed	4.03×10 ⁻³	1.15×10 ⁻⁴	327	595	1.36	2.17

Conclusions

- A modified Amundson model successfully characterized the adsorption process taking place in fixed bed reactors;
- Lumped K is introduced to describe the breakthrough curves. K is a function of apparent reaction rate, challenge gas concentration, and sorbent capacity density;
- High voidage decreased the apparent reaction rate; the micronsized fibers reduce the characteristic dimension.
- The low capacity density increase the lumped K;
- Microfibrous entrapped sorbents have low capacity but high sorbent utilization.
- Composite bed (a packed bed followed by microfibrous entrapped sorbent polisher) synergistically combines the high volume loading of packed beds and the overall contacting efficiency of small particulates.

Acknowledgements

• This work was supported by the US Army under a U.S. Army contract at Auburn University (ARMY-W56HZV-05-C0686) administered through the US Army Tank-Automotive Research, Development and Engineering Center (TARDEC).

Thank you for your attention